精英家教网 > 高中数学 > 题目详情
17.函数f(x)对于任意实数x满足条件f(x+2)=-f(x),若f(1)=-5,则f(f(5))=5.

分析 推导出f(x+4)=-f(x+2)=f(x),f(5)=f(1)=-5,从而f(f(5))=f(-5)=f(-1)=f(3)=-f(1),由此能求出结果.

解答 解:∵函数f(x)对于任意实数x满足条件f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∵f(1)=-5,∴f(5)=f(1)=-5,
f(f(5))=f(-5)=f(-1)=f(3)=-f(1)=5.
故答案为:5.

点评 本题考查函数值的求法,考查函数的周期性等基础知识,考查推理论证能力、运算求解,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为(  )
A.$\frac{1}{2}$B.2
C.1D.条件不够,不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若 sinα+cosα=$\frac{{2\sqrt{3}}}{3}$,α为锐角,则$\frac{1+tanα}{sin2α-cos2α+1}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)的导函数为f′(x),f(x)+f′(x)=x,f(1)=1,则f(x)的零点个数为(  )
A.0B.1C.2D.至少3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-3x+2+klnx,其中k∈R
(Ⅰ)试讨论函数f(x)极值点的个数,并说明理由
(Ⅱ)若对任意的x>1,不等式f(x)≥0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知c>0且c≠1,命题p:指数函数y=(2c-1)x在R上为减函数,q:不等式x+(x-2c)2>1的解集为R.若p∧q为假命题,p∨q为真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A={x|x2-x-2≤0},B={x|x2-2x+k≤0},若B⊆A,求k范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示在6×6的方格中,有A,B两个格子,则从该方格表中随机抽取一个矩形,该矩形包含格子A但不包含格子B的概率为$\frac{4}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:函数f(x)=x2-2ax+3在区间[-1,2]上单调递增;
命题q:函数g(x)=lg(x2+ax+4)的定义域为R;
若命题“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

同步练习册答案