精英家教网 > 高中数学 > 题目详情

已知函数
(I)求函数的极值;
(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.
设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

(I),无极大值;(II)函数存在“分界线”,方程为

解析试题分析:(I)首先求函数的定义域,解方程可能的极值点,进一步得的单调性,最后根据导函数在零点附近的变号情况求的极值;(II)函数的图象在处有公共点.设函数存在“分界线”,方程为,由对任意恒成立,确定常数,从而得“分界线”的方程为,再证明时也恒成立,最后确定函数的“分界线”就是直线
试题解析:(I)

所以上单调递减,上单调递增,

所以,无极大值.  
(II)由(I)知
所以函数的图象在处有公共点.  
设函数存在“分界线”,方程为
应有对任意恒成立,即时恒成立,
于是,得
则“分界线”的方程为. 
,则
,所以上单调递增,上单调递减,
时,函数取得最大值,即时恒成立.  
综上所述,函数存在“分界线”,方程为 ……
考点:1、应用导数求函数极值(最值);2、应用导数研究函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

工厂生产某种产品,次品率与日产量(万件)间的关系为常数,且),已知每生产一件合格产品盈利元,每出现一件次品亏损元.
(1)将日盈利额(万元)表示为日产量(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.
(Ⅰ)已知函数,若,求实数的取值范围;
(Ⅱ)已知的部分函数值由下表给出,











 求证:
(Ⅲ)定义集合
请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为
(Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题:函数上为减函数, 命题的值域为,命题函数定义域为
(1)若命题为真命题,求的取值范围。
(2)若为真命题,为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.

查看答案和解析>>

同步练习册答案