【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1 .
【答案】
(1)解:在平面ABC内,过点P作直线l和BC平行.
理由如下:由于直线l不在平面A1BC内,l∥BC,BC平面A1BC,
故直线l与平面A1BC平行
(2)证明:在△ABC中,∵AB=AC,D是线段AC的中点,
∴AD⊥BC,又l∥BC,∴l⊥AD.
又∵AA1⊥底面ABC,∴AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1
【解析】(1)在平面ABC内,过点P作直线l和BC平行.利用线面平行的判定定理即可证明.(2)在△ABC中,由AB=AC,D是线段AC的中点,可得AD⊥BC,l⊥AD.又AA1⊥底面ABC,可得AA1⊥l.即可证明.
【考点精析】掌握棱柱的结构特征和直线与平面垂直的判定是解答本题的根本,需要知道两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA面ABCD,且AB=2,AD=4,
AP=4,F是线段BC的中点.
⑴ 求证:面PAF面PDF;
⑵ 若E是线段AB的中点,在线段AP上是否存在一点G,使得EG面PDF?若存在,求出线段AG的长度;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在[0,1]上的函数f(x)满足:①f(0)=0;②f(x)+f(1﹣x)=1;③f( )= f(x);④当0≤x1<x2≤1时,f(x1)≤f(x2).则f( )= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知⊙O中,直径AB垂直于弦CD,垂足为M,P是CD延长线上一点,PE切⊙O于点E,连接BE交CD于点F,证明:
(1)∠BFM=∠PEF;
(2)PF2=PD·PC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于两个图形F1 , F2 , 我们将图象F1上任意一点与图形F2上的任意一点间的距离中的最小值,叫作图形F1与F2图形的距离,若两个函数图象的距离小于1,则这两个函数互为“可及函数”,给出下列几对函数,其中互为“可及函数”的是 . (写出所有正确命题的编号) ①f(x)=cosx,g(x)=2;
②f(x)=ex . g(x)=x;
③f(x)=log2(x2﹣2x+5),g(x)=sin ﹣x;
④f(x)=x+ ,g(x)=lnx+2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点A( , ),B( , ). (Ⅰ)求 , 夹角的余弦值;
(Ⅱ)已知C(1,0),记∠AOC=α,∠BOC=β,求tan 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R)
(1)若函数f(x)的图象过点(﹣2,1),且函数f(x)有且只有一个零点,求f(x)的表达式;
(2)在(1)的条件下,当x∈(﹣1,2)时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com