精英家教网 > 高中数学 > 题目详情

【题目】定义在[0,1]上的函数f(x)满足:①f(0)=0;②f(x)+f(1﹣x)=1;③f( )= f(x);④当0≤x1<x2≤1时,f(x1)≤f(x2).则f( )=

【答案】
【解析】解:∵函数f(x)在[0,1]上为非减函数,且①f(0)=0;③f(1﹣x)+f(x)=1, 令x=1可得f(1)=1.
∵f( )= f(x);
∴f( )= f(1)=
再由③可得f( )+f(1﹣ )=1,故有f( )=
对于②f( )= f(x);
由此可得 f( )= f( )= ,f( )= f( )= 、f( )= f( )= 、f( )= .f( )= ,f( )=
令x= ,由f( )= ,可得 f( )= ,f( )= ,f( )= ,f( )= .f( )= ,f( )=
,可得 =f( )≤f( )≤f( )=
得f( )=
所以答案是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,f(1)=﹣
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若曲线在点处的切线与直线垂直,求函数的极值;

(Ⅱ)设函数.当时,若区间上存在,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由小到大排列的一组数据x1 , x2 , x3 , x4 , x5 , 其中每个数据都小于﹣1,则样本1,x1 , ﹣x2 , x3 , ﹣x4 , x5的中位数为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0).
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证: (Ⅰ)A1C∥平面BDE;
(Ⅱ)平面A1AC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)当 时,求函数f(x)的取值范围;
(2)将f(x)的图象向左平移 个单位得到函数g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体为调查喜爱娱乐节目是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:

(1)根据该等高条形图,完成下列列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众性别有关?

(2)从性观众中按喜欢节目与否,用分层抽样的方法抽取5名做进一步调查.从这5名中任选2名,求恰有1名喜欢节目和1名不喜欢节目的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案