【题目】已知抛物线的方程为
,过点
的直线
与抛物线相交于
两点,分别过点
作抛物线的两条切线
和
,记
和
相交于点
.
(1)证明:直线
和
的斜率之积为定值;
(2)求证:点
在一条定直线上.
【答案】(1)直线
和
的斜率之积为定值
.(2)点
在定直线
上.
【解析】试题分析:(1)依题意,直线
的斜率存在,设直线
的方程为
,与抛物线联立得
,设
的坐标分别为
,根据求导得切线斜率,结合韦达定理即可证得;
(2)由点斜式写出直线
和
的方程,联立这两个方程,消去
得整理得
,注意到
,所以
,此时
,从而得证.
试题解析:
解:(1)依题意,直线
的斜率存在,设直线
的方程为
,
将其代入
,消去
整理得
.
设
的坐标分别为
,
则
.
将抛物线的方程改写为
,求导得
.
所以过点
的切线
的斜率是
,过点
的切线
的斜率是
,
故
,
所以直线
和
的斜率之积为定值
.
(2)设
.因为直线
的方程为
,即
,
同理,直线
的方程为
,
联立这两个方程,消去
得
,
整理得
,注意到
,所以
.
此时
.
由(1)知,
,所以
,
所以点
在定直线
上.
科目:高中数学 来源: 题型:
【题目】已知直线a、b和平面
,下列说法中正确的有______ .
若
,则
;
若
,则
;
若
,则
;
若直线
,直线
,则
;
若直线a在平面
外,则
;
直线a平行于平面
内的无数条直线,则
;
若直线
,那么直线a就平行于平面
内的无数条直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
![]()
(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
表示两个不同的平面,
表示两条不同直线,对于下列两个命题:
①若
,则“
”是“
”的充分不必要条件;
②若
,则“
”是“
且
”的充要条件.判读正确的是( )
A. ①②都是真命题 B. ①是真命题,②是假命题
C. ①是假命题,②是真命题 D. ①②都是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图象,如图所示,并根据图象:
![]()
(1)直接写出函数
,
的增区间;
(2)写出函数
,
的解析式;
(3)若函数
,
,求函数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l:
(t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P(
,0),求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间
(单位:天)的函数,且日销售量近似满足
,价格近似满足
。
(1)写出该商品的日销售额
(单位:元)与时间
(
)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量
商品价格);
(2)求该种商品的日销售额
的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com