精英家教网 > 高中数学 > 题目详情
17.一袋中装有大小相同的6个黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则ξ=6表示的试验结果是{1,2,6},{1,3,6},{1,4,6},{1,5,6},{2,3,6},{2,4,6},{2,5,6},{3,4,6},{3,5,6},{4,5,6}.

分析 ξ=6表示的试验结果是在1,2,3,4,5任取两球,再取6.

解答 解:一袋中装有大小相同的6个黑球,编号为1,2,3,4,5,6,
现从中随机取出3个球,以ξ表示取出的球的最大号码,
则ξ=6表示的试验结果是:
{1,2,6},{1,3,6},{1,4,6},{1,5,6},{2,3,6},{2,4,6},{2,5,6},{3,4,6},{3,5,6},{4,5,6}.
故答案为:{1,2,6},{1,3,6},{1,4,6},{1,5,6},{2,3,6},{2,4,6},{2,5,6},{3,4,6},{3,5,6},{4,5,6}.

点评 本题考查试验结果的表示,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=aex-1-x2+bln(x+1).
(1)当a=0,b=1时,求函数f(x)的单调区间;
(2)设函数f(x)在点(0,f(0))处的切线方程为x-ey+1=0,当x(-1,1]时,求证:f(x)<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=f(x),若在区间I内有且只有一个实数c(c∈I),使得f(c)=0成立,则称函数y=f(x)在区间I内具有唯一零点.
(1)判断函数f(x)=log2|x|在定义域内是否具有唯一零点,并说明理由;
(2)已知向量$\overrightarrow{m}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{n}$=(sin2x,cos2x),x∈(0,π),证明f(x)=$\overrightarrow{m}•\overrightarrow{n}$+1在区间(0,π)内具有唯一零点;
(3)若函数f(x)=x2+2mx+2m在区间(-2,2)内具有唯一零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某水域的两直线型岸边l1,l2 成定角120°,在该水域中位于该角角平分线上且与顶点A相距1公里的D处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC(B,C分别在l1和l2上),围出三角形ABC养殖区,且AB和AC都不超过5公里.设AB=x公里,AC=y公里.
(1)将y表示成x的函数,并求其定义域;
(2)该渔民至少可以围出多少平方公里的养殖区?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)为奇函数,且在(0,+∞)上单调递增,则以下结论正确的是(  )
A.函数|f(x)|为偶函数,且在(-∞,0)上单调递增
B.函数|f(x)|为奇函数,且在(-∞,0)上单调递增
C.函数f(|x|)为奇函数,且在(0,+∞)上单调递增
D.函数f(|x|)为偶函数,且在(0,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合S={0,1,2,3,5},从中任取两个不同的数作为A,B的值,得到直线Ax+By=0所有不同的直线的条数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}首项为a1,公差为b1,等比数列{bn}首项为b1,公比为a1,其中a1,b1都是大于1的正整数,且a1<b1,b2<a3,对于任意的n∈N*,总存在m∈N*,使得am+5=bn成立,则an=7n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.n件不同物品放入m个抽屉中,不限放法,共有多少种不同放法?请说明原理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用计算器计算下列各式的值(保留四位有效数字):
(1)(3.512×7.8-1)${\;}^{-\frac{4}{3}}$;
(2)$\frac{4.2{8}^{-\frac{2}{3}}×0.9{3}^{4}}{71.0{5}^{-1.13}}$.

查看答案和解析>>

同步练习册答案