精英家教网 > 高中数学 > 题目详情
5.如图,某水域的两直线型岸边l1,l2 成定角120°,在该水域中位于该角角平分线上且与顶点A相距1公里的D处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC(B,C分别在l1和l2上),围出三角形ABC养殖区,且AB和AC都不超过5公里.设AB=x公里,AC=y公里.
(1)将y表示成x的函数,并求其定义域;
(2)该渔民至少可以围出多少平方公里的养殖区?

分析 (1)由S△ABD+S△ACD=S△ABC,将y表示成x的函数,由0<y≤5,0<x≤5,求其定义域;
(2)S=$\frac{1}{2}$xysinA=$\frac{1}{2}•x•\frac{x}{x-1}•$sin120°=$\frac{\sqrt{3}{x}^{2}}{4(x-1)}$($\frac{5}{4}$≤x≤5),变形,利用基本不等式,即可得出结论.

解答 解:(1)由S△ABD+S△ACD=S△ABC,得$\frac{1}{2}xsin60°+\frac{1}{2}ysin60°=\frac{1}{2}xysin120°$,
所以x+y=xy,所以y=$\frac{x}{x-1}$
又0<y≤5,0<x≤5,所以$\frac{5}{4}$≤x≤5,
所以定义域为{x|$\frac{5}{4}$≤x≤5};
(2)设△ABC的面积为S,则结合(1)得:S=$\frac{1}{2}$xysinA=$\frac{1}{2}•x•\frac{x}{x-1}•$sin120°=$\frac{\sqrt{3}{x}^{2}}{4(x-1)}$($\frac{5}{4}$≤x≤5)
$\frac{{x}^{2}}{x-1}$=(x-1)+$\frac{1}{x-1}$+2≥4,当仅当x-1=$\frac{1}{x-1}$,x=2时取等号.
故当x=y=2时,面积S取最小值\$\sqrt{3}$平方公里.
答:该渔民总共至少可以围出$\sqrt{3}$平方公里的养殖区.

点评 本题考查的是利用基本不等式解决实际问题,考查三角形面积的计算,正确计算面积,利用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知公差不为零的等差数列{an}(n≥3)的最大项为正数.若将数列{an}中的项重新排列得到公比为q的等比数列{bn}.则下列说法正确的是(  )
A.q>0时,数列{bn}中的项都是正数B.数列{an}中一定存在的为负数的项
C.数列{an}中至少有三项是正数D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}首项和公差都是$\frac{2}{3}$,记{an}的前n项和为Sn,等比数列{bn}各项均为正数,公比为q,记{bn}的前n项和为Tn
(I)写出Si(i=1,2,3,4,5)构成的集合A;
(Ⅱ)若将Sn中的整数项按从小到大的顺序构成数列{cn},求{cn}的一个通项公式;
(Ⅲ)若q为正整数,问是否存在大于1的正整数k,使得Tk,T2k同时为(1)中集合A的元素?若存在,写出所有符合条件的{bn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设当x=θ时,函数f(x)=2cosx-3sinx取得最小值,则tanθ等于(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和记为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“G数列”.
(1)若数列{an}的通项公式an=2n,判断{an}是否为“G数列”;
(2)等差数列{an},公差d≠0,a1=2d,求证:{an}是“G数列”;
(3)设Sn与an满足(1-q)Sn+an+1=r,其中a1=2t>0,q≠0.若{an}是“G数列”,求q,r满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线f(x)=aln(x+1)-x2-2x-1在点(0,f(0))处的切线与x轴平行.
(I)求实数a的值;
(Ⅱ)设g(x)=$\frac{1}{2}$[f(x)+(1+2c)x2+1],是否存在实数c,使得当x∈(-1,b],b∈[1,2]时,函数g(x)的最大值为g(b)?若存在,求c的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一袋中装有大小相同的6个黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则ξ=6表示的试验结果是{1,2,6},{1,3,6},{1,4,6},{1,5,6},{2,3,6},{2,4,6},{2,5,6},{3,4,6},{3,5,6},{4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用红、黄、蓝、绿4种颜色为一个五棱锥的六个顶点着色,要求每一条棱的两个端点着不同的颜色,则不同的着色方案共有 (  )种?
A.120B.140C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的公差不为零,其前n项和为Sn,a22=S3,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)记Tn=a1+a5+a9+…+a4n-3,求Tn

查看答案和解析>>

同步练习册答案