精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

【答案】B
【解析】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,
则双曲线为等轴双曲线,即a=b,
双曲线的渐近线方程为y=± x=±x,
则经过F和P(0,4)两点的直线的斜率k= =
=1,c=4,则a=b=2
∴双曲线的标准方程:
故选B.
【考点精析】通过灵活运用斜率的计算公式,掌握给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x1即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3-3ax+b(a≠0).

(1)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;

(2)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程.
极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为 (t为参数,0≤α<π),射线θ=φ,θ=φ+ ,θ=φ﹣ 与曲线C1交于(不包括极点O)三点A、B、C.
(1)求证:|OB|+|OC|= |OA|;
(2)当φ= 时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为﹣6的等差数列{an}的前7项和为0,等比数列{bn}满足b3=a7 , |b3﹣b4|=6.
(1)求数列{bn}的通项公式;
(2)是否存在正整数k,使得数列{ }的前k项和大于 ?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|3x﹣ |.
(1)求不等式f(x)<1的解集;
(2)若实数a,b,c满足a>0,b>0,c>0且a+b+c= .求证: + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 (λ∈R),且 =﹣4,则λ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A-BCDE,底面BCDE是等腰梯形,BC DE, DCB=45°,OBC中点,AO=,BC=6,AD=AE=2CD=.

(1)证明:AO⊥平面BCD;

(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD—A1B1C1D1中,若EA1C1中点,则直线CE垂直于( )

A. AC B. BD C. A1D D. A1A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD中,以D为原点建立空间直角坐标系,E为B的中点,F为的中点,则下列向量中,能作为平面AEF的法向量的是( )

A. (1,-2,4) B. (-4,1,-2)

C. (2,-2,1) D. (1,2,-2)

查看答案和解析>>

同步练习册答案