精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=$\left\{\begin{array}{l}{1,-∞<x<0}\\{{e}^{x},0≤x<1}\\{4-{x}^{2},1≤x<+∞}\end{array}\right.$,求f(-1),f($\frac{1}{2}$),f(1)和f(2).

分析 直接利用分段函数求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{1,-∞<x<0}\\{{e}^{x},0≤x<1}\\{4-{x}^{2},1≤x<+∞}\end{array}\right.$,
f(-1)=1,
f($\frac{1}{2}$)=$\sqrt{e}$,
f(1)=3
f(2)=4-4=0.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的实数x的取值范围:
(1)2x>8;         
(2)3x<$\frac{1}{27}$;
(3)($\frac{1}{2}$)x>$\sqrt{2}$;   
(4)5x<0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式x${\;}^{lo{g}_{\frac{1}{2}}x}$<$\frac{1}{x}$的解集是(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=$\frac{2}{3}$,an+1=$\frac{n}{n+2}$an,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b∈(0,+∞),且满足8a+2b=ab-9,则ab的取值范围是[81,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:$\frac{lg5•lg8000+(lg{2}^{\sqrt{3}})^{2}}{lg600-\frac{1}{2}lg36-\frac{1}{2}lg0.01}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤1)}\\{x+\frac{1}{x}-6(x>1)}\end{array}\right.$,则f(f(-2))=$-\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知3x=4y=36,求$\frac{2y+x}{xy}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.高一年级下学期进行文理分班,为研究选报文科与性别的关系,对抽取的50名同学调查得到列联表如下,已知
P(k2≥3.84)≈0.05,(k2≥5.024)≈0.025,计算k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$≈4.848,则至少有95%的把握认为选报文科与性别有关.

查看答案和解析>>

同步练习册答案