精英家教网 > 高中数学 > 题目详情
11.已知数列{ an }满足a1=$\frac{2}{3}$,且对任意的正整数m,n,都有am+n=am+an.数列{an}的前n项和为Sn,若恒有$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$<T(n∈N*),则T的最小整数值为(  )
A.1B.2C.3D.4

分析 根据数列的性质归纳得出通项公式,得出{an}为等差数列,求出Sn,利用列项法求出$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$得出结论.

解答 解:∵am+n=am+an,a1=$\frac{2}{3}$.
∴a2=2a1=$\frac{4}{3}$,
a3=a2+a1=3a1=2,

∴an=na1=$\frac{2n}{3}$.
∴{an}是以$\frac{2}{3}$为首项,以$\frac{2}{3}$为等差的等差数列.
∴Sn=$\frac{\frac{2}{3}+\frac{2n}{3}}{2}×n$=$\frac{{n}^{2}+n}{3}$,
∴$\frac{1}{{S}_{n}}$=$\frac{3}{{n}^{2}+n}$=3($\frac{1}{n}-\frac{1}{n+1}$),
∴$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$=3(1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$)=3(1-$\frac{1}{n+1}$)=3-$\frac{3}{n+1}$<3.
∴T的最小正整数值为3.
故选C.

点评 本题考查了数列通项公式的求法,求和公式,列项法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax3+bx2+b2x,在x=1处有极大值$\frac{1}{3}$,则b=(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC(国际电工委员会)风能风区分类标准如表:
风能分类一类风区二类风区
平均风速m/s8.5--106.5--8.5
某公司计划用不超过100万元的资金投资于A、B两个小型风能发电项目.调研结果是,未来一年内,位于一类风区的A项目获利40%的可能性为0.6,亏损20%的可能性为0.4;
B项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.
假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,且公司要求对A项目的投资不得低于B项目.(1)请根据公司投资限制条件,写出x,y满足的条件,并将它们表示在平面xOy内;
(2)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(3)根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值,并据此给出公司分配投资金额建议.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l:3x+y-6=0和圆C:x2+y2-2y-4=0.
(1)求圆的圆心和半径,并求出圆心到到直线l的距离.
(2)若相交,求出直线被圆所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(I)求证:$\sqrt{5}$+$\sqrt{7}$<2$\sqrt{6}$;
(Ⅱ)已知a>0,b>0且a+b>2,求证:$\frac{1+a}{b}$,$\frac{1+b}{a}$中至少有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]g{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)的解集区间的长度为10,则 k=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一个口袋里装有4个红球,6个白球,每次从口袋中任意取出一球,记下颜色后再放回口袋内,这样连续取了4次,恰有2次是红球的概率是(  )
A.0.3456B.0.3546C.0.375 6D.0.457 6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某正三棱锥的三视图如图所示,则该正三棱锥的侧视图的面积为(  )
A.$9\sqrt{2}$B.9C.3$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=9tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案