精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1
内有一点P(1,-1),F是椭圆的右焦点.
(1)求该椭圆的离心率.
(2)在椭圆上求一点M,使得|MP|+2|MF|的值最小,并求出这个最小值.
分析:(1)根据椭圆的标准方程得到a2、b2的值,再由c=
a2-b2
求出c的值,再求出离心率;
(2)根据题意画出图形,利用椭圆的第二定义,把|MF|转化到右准线的距离,利用“两点间的距离最短”和条件,求出最小值以及对应的M点的坐标.
解答:解:(1)依题设a2=4,b2=3,c=
a2-b2
=1

所以,离心率e=
c
a
=
1
2

(2)如图:过M点作MQ垂直于椭圆的右准线,垂足为点Q,
由椭圆的第二定义和(1)可知:
|MF|
|MQ|
=
1
2
,所以|MF|=
1
2
|MQ|

故|MP|+2|MF|=|MP|+|MQ|,
所以当P、M、Q三点共线时,由P(1,-1)得,
所求的值最小为|PQ|=(
a2
c
-xP)=4-1=3

把y=-1代入椭圆方程,解得x=
2
6
3
或x=-
2
6
3
(舍去),
此时,M(
2
6
3
,-1)
点评:本题考查了椭圆的简单性质应用,要求会根据椭圆的标准方程求出a、b、c、e的值,对于求距离的最值,一般利用第二定义把“椭圆上点到焦点的距离和到对应准线的距离”进行转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案