【题目】下表列出了10名5至8岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合y与x的关系:
体重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
体积y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y关于x的线性回归方程
(系数精确到0.01);
(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:
,
,
,
,
,
,137×14=1918.00.
参考公式:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C经过伸缩变换
得到曲线E,直线l:
(t为参数)与曲线E交于A,B两点,
(1)设曲线C上任一点为
,求
的最小值;
(2)求出曲线E的直角坐标方程,并求出直线l被曲线E截得的弦AB长;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量
(单位:
)和与它“相近”的株数
具有线性相关关系(两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
| 0 | 1 | 2 | 3 | 4 |
| 15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量
关于它“相近”株数
的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为
,计划收获后能全部售出,价格为10元
,如果收入(收入=产量×价格)不低于25000元,则
的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为
,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口某天0时至24时的水深
(米)随时间
(时)变化曲线近似满足如下函数模型
(
).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )
A.16时B.17时C.18时D.19时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点
是曲线
:
上的一个动点,曲线
在点
处的切线与
轴、
轴分别交于
,
两点,点
是坐标原点,①
;②
的面积为定值;③曲线
上存在两点
,
使得
是等边三角形;④曲线
上存在两点
,
使得
是等腰直角三角形,其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长与焦距分别为方程
的两个实数根.
(1)求椭圆的标准方程;
(2)若直线
过点
且与椭圆相交于
,
两点,
是椭圆的左焦点,当
面积最大时,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com