精英家教网 > 高中数学 > 题目详情

22. 已知常数a>0,向量c=(0,a),i=1,0).经过原点Oc+i为方向向量的直线与经过定点

A(0,a)以i2c为方向向量的直线相交于点P,其中R.试问:是否存在两个定点EF,使得|PE|+|PF|为定值.若存在,求出EF的坐标;若不存在,说明理由.

22.

解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.

i=(1,0),c=(0,a),

c+i=(a),i2c=(1,-2a).                         

因此,直线OPAP的方程分别为*y=axya=-2ax.                                           

 

消去参数,得点Pxy)的坐标满足方程yya)=-2a2x2

整理得           +=1.                                      ①

因为a>0,所以得:

(ⅰ)当a=时,方程①是圆方程,故不存在合乎题意的定点EF

(ⅱ)当0<a<时,方程①表示椭圆,焦点EF为合乎题意的两个定点;

(ⅲ)当a>时,方程①也表示椭圆,焦点EF为合乎题意的两个定点.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1+cosωx,1),
b
=(1,a+
3
sinωx)(ω为常数且ω>0),函数f(x)=
a
b
在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移
π
个单位,可得函数y=g(x)的图象,若y=g(x)在[0,
π
4
]上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),设函数f(x)=
a
b
(x∈R)的图象关于直线x=
π
3
对称,其中常数ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象向左平移
π
12
个单位,得到函数g(x)的图象,用五点法作出函数g(x)在区间[-
π
2
π
2
]的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx),
b
=(
3
,2cosωx),函数f(x)=
a
b
(x∈R)的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,求y=h(x)在[-
π
4
π
4
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,设函数f(x)=
a
b
(x∈R)
的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(cos2ωx-sin2ωx,sinωx),
b
=(
3
,2cosωx),函数f(x)=
a
b
(x∈R)的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,求y=h(x)在[-
π
4
π
4
]
上的取值范围.

查看答案和解析>>

同步练习册答案