精英家教网 > 高中数学 > 题目详情

过双曲线数学公式的右焦点F,在第一象限内作双曲线渐近线的垂线,垂足为D,若FD中点在双曲线上,则此双曲线的离心率为


  1. A.
    数学公式+1
  2. B.
    2
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:依题意可求得|FD|=b,通过第一象限内的双曲线渐近线方程与其垂线的方程求得点D的坐标,从而可得FD中点M的坐标,利用双曲线的第二定义即可求得其离心率.
解答:由题意得,该双曲线的右焦点F(c,0),
第一象限内的双曲线的渐近线l的方程为:y=x,即bx-ay=0,
设点F 到l的距离为d,则d==b,即|FD|=b,
又直线FD⊥l,
∴直线FD的方程为:y=-(x-c)
得D(),设FD的中点为M,由中点坐标公式可得M(),
又FD中点M在双曲线上,该双曲线的右准线方程为:x=,点M 到右准线的距离d=|-|,而|MF|=|FD|=b,
∴由双曲线的第二定义可得e===,又e=
∴a=b.
∴e===
故选D.
点评:本题考查双曲线的简单性质,考查点到直线间的距离与中点坐标公式,考查双曲线的第二定义,考查分析转化与综合应用的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的右准线交x轴于A,虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于P,过点A、B的直线与FP相交于点D,且2
OD
=
OF
+
OP
(O为坐标原点).
(Ⅰ)求双曲线的离心率;
(Ⅱ)若a=2,过点(0,-2)的直线l交该双曲线于不同两点M、N,求
OM
ON
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足:2
OD
=
OF
+
OP
(O为原点)且
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线于 M、N两点,问在y轴上是否存在定点C,使?
CM
CN
为常数,若存在,求出C点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知双曲线的方程为x2-
y2
3
=1,直线m的方程为x=
1
2
,过双曲线的右焦点F的直线l与双曲线的右支相交于P、Q,以PQ为直径的圆与直线m相交于M、N,记劣弧
MN
的长度为n,则
n
|PQ|
的值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
,其右准线交x轴于点A,双曲线虚轴的下端点为B.过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足2
OD
=
OF
+
OP
(O为原点)
AB
AD
(λ≠0)

(1)求双曲线的离心率;
(2)若a=2,过点B作直线l分别交双曲线的左支、右支于M、N两点,且△OMN的面积S△OMN=2
6
,求l的方程.

查看答案和解析>>

同步练习册答案