精英家教网 > 高中数学 > 题目详情
不等式ax2+ax+1>0对任意实数x都成立,则a的范围用区间表示为
 
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:由已知得a=0,或
a>0
△=a2-4a<0
,由此能求出实数a的取值范围.
解答: 解:∵不等式ax2+ax+1>0对任意x∈R恒成立,
∴a=0,或
a>0
△=a2-4a<0

解得0≤a<4,
故答案为:[0,4).
点评:本题主要考查二次函数的性质,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx,0<x≤e
2-lnx,x>e
,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:
1
a1
+
1
a2
+
1
a3
+…+
1
an
=n2(n∈N*)
,令bn=anan+1,Sn为数列{bn}的前n项和.
(1)求an和Sn
(2)对任意的正整数n,不等式Sn>λ-
1
2
恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的右焦点为F,P是第一象限内C上的点,Q为双曲线左准线上的点,若OP垂直平分FQ,则双曲线的离心率e的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),满足对称轴为直线x=1,且方程f(x)=x有两个相等实根,
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域为[m,n],值域为[3m,3n],若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程0.7x-0.001x=0的实数根的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+
f(x)
x
>0,则关于的函数g(x)=f(x)+
2
x
的零点个数为(  )
A、0B、1
C、2D、0或 2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2x-3的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列对应关系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根;
②A=R,B=R,f:x→x的倒数;
③A=R,B=R,f:x→x2-2;
④A表示平面内周长为5的所有三角形组成集合,B是平面内所有的点的集合,f:三角形→三角形的外心.
其中是A到B的映射的是(  )
A、③④B、②④C、①③D、②③

查看答案和解析>>

同步练习册答案