精英家教网 > 高中数学 > 题目详情
设函数f(x)=x+
a
x
+lnx(x>0),若对?x>0,都有f(x)>3成立,求实数a的取值范围.
考点:利用导数研究函数的单调性,函数恒成立问题
专题:导数的综合应用
分析:若f(x)=x+
a
x
+lnx>3恒成立,则a>3x-x•lnx-x2恒成立,构造函数h(x)=3x-x•lnx-x2,利用导数法求出函数的最大值,可得实数a的取值范围.
解答: 解:∵若f(x)=x+
a
x
+lnx>3恒成立,
则a>3x-x•lnx-x2恒成立,
令h(x)=3x-x•lnx-x2
则h′(x)=3-lnx-1-2x=2-2x-lnx
∵当0<x<1时,h′(x)>0,
当x>1时,h′(x)<0,
故当x=1时,h(x)取得最大值2,
故a>2,
即实数a的取值范围为(2,+∞)
点评:本题考查的知识点是函数恒成立问题,导数法求函数的最值,其中将恒成立问题转化为函数最值问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若某几何体的三视图如图所示,则这个几何体的体积是(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

一厂家向用户提供的一箱产品共12件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(Ⅰ)求这箱产品被用户接收的概率;
(Ⅱ)记抽检的产品件数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-ax2+lnx,a≥0,当a=1时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)2×(
32
×
3
6+(
2
2
)
4
3
-4×(
16
49
)
1
2
-
42
×80.25+(-2014)0
(2)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216)

查看答案和解析>>

科目:高中数学 来源: 题型:

某地一渔场的水质受到了污染.渔场的工作人员对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m(m∈N*)个单位的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足y=mf(x),其中f(x)=
log3(x+4),0<x≤5
6
x-2
,x>5
,当药剂在水中释放的浓度不低于6(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于6(毫克/升)且不高于18(毫克/升)时称为最佳净化.
(Ⅰ)如果投放的药剂质量为m=6,试问渔场的水质达到有效净化一共可持续几天?
(Ⅱ)如果投放的药剂质量为m,为了使在8天(从投放药剂算起包括第8天)之内的渔场的水质达到最佳净化,试确定应该投放的药剂质量m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(其中b,c为实常数).
(1)若b>2,且y=f(sinx)的最大值为5,最小值为-1,求函数的解析式;
(2)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0],若存在,求出f(x)的解析式;
(3)已知集合A={x|x2+Bx+C=x}中有且仅有一个元素,若f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计,得到如下频率分布表:
组别 分组 频数 频率
第一组 [180,210)   0.1
第二组 [210,240) 8 s
第三组 [240,270) 12 0.3
第四组 [270,300) 10 0.25
第五组 [300,330)   t
(1)求分布表中s,t的值;
(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这40名学生中抽取20名进行研究,问应抽取多少名第一组的学生?
(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知定义在R上的函数f(x),对任意实数x1,x2都有f(x1+x2)=1+f(x1)+f(x2),且f(1)=1.
(1)若对任意正整数n,有an=f(
1
2n
)+1,求a1、a2的值,并证明{an}为等比数列;
(2)设对任意正整数n,有bn=
1
f(n)
,若不等式bn+1+bn+2+…+b2n
6
35
log2(x+1)对任意不小于2的正整数n都成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案