精英家教网 > 高中数学 > 题目详情
10.计算$\frac{1}{2!}$+$\frac{2}{3!}$+$\frac{3}{4!}$+…+$\frac{2015}{2016!}$=1-$\frac{1}{2016!}$.

分析 由于$\frac{n-1}{n!}$=$\frac{1}{(n-1)!}-\frac{1}{n!}$(n≥2),利用“裂项求和”方法即可得出.

解答 解:∵$\frac{n-1}{n!}$=$\frac{1}{(n-1)!}-\frac{1}{n!}$(n≥2),
∴$\frac{1}{2!}$+$\frac{2}{3!}$+$\frac{3}{4!}$+…+$\frac{2015}{2016!}$=$(\frac{1}{1!}-\frac{1}{2!})$+$(\frac{1}{2!}-\frac{1}{3!})$+…+$(\frac{1}{2015!}-\frac{1}{2016!})$
=1-$\frac{1}{2016!}$,
故答案为:1-$\frac{1}{2016!}$.

点评 本题考查了阶乘的性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求函数y=2sin(-2x+$\frac{π}{3}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③一条直线垂直于一个平面内的无数条直线,则这条直线和这个平面垂直;
④垂直于同一直线的两平面互相平行.
A.①和②B.②和③C.②和④D.③和④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=7,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-7≥0}\\{y-3≤0}\end{array}\right.$,则z=$\frac{y}{x+1}$的最大值为(  )
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“互联网+”时代,全民阅读的内涵已经多元化,倡导读书成为一种生活方式,某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆C的中心在坐标原点O,焦点在x轴上,离心率为$\frac{1}{2}$,以椭圆的四个顶点为顶点的四边形的面积为28$\sqrt{3}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在空间中,已知直线a、b和平面α、β满足a?α,b?β,α∥β,则直线a、b的位置关系是平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=2an+4•3n-1,a1=1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案