精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线6x+y-3=0平行,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[-2,$\sqrt{3}$]上的最大值和最小值.

分析 (1)根据奇函数得f(0)=0,再根据(1,f(1))处的切线与直线6x+y-3=0平行,求出切点坐标,根据切点处导数值为切线斜率列出关于a,b,c的方程组求出解;
(2)根据函数的性质求出单调区间,然后求出最值即可.

解答 解:(1)∵f(x)为奇函数,
∴f(-x)=-f(x),
即-ax3-bx+c=-ax3-bx-c,
∴c=0,
∴f′(x)=3ax2+b,
∵函数f(x)=ax3+bx+c(a≠0)的图象在点x=1处的切线与直线6x+y+3=0平行,
∴f′(1)=3a+b=-6,
∵导函数f′(x)的图象经过点(0,-12),
∴b=-12,
∴a=2,
∴函数f(x)=2x3-12x;
(2)∵f(x)=2x3-12x,
∴f′(x)=6x2-12=6(x+$\sqrt{2}$)(x-$\sqrt{2}$),列表如下:

 x (-∞,-$\sqrt{2}$)-$\sqrt{2}$ (-$\sqrt{2}$,$\sqrt{2}$) $\sqrt{2}$ ($\sqrt{2}$,+∞)
 f′(x)+ 0- 0+
 f(x) 增 极大 减 极小 增
∴函数f(x)的单调增区间是(-∞,-$\sqrt{2}$)和($\sqrt{2}$,+∞),
∵f(-2)=8,f(-$\sqrt{2}$)=8$\sqrt{2}$,f($\sqrt{2}$)=-8$\sqrt{2}$,f(3)=18,
∴f(x)在[-2,$\sqrt{3}$]上的最大值是f(3)=18,最小值是-8$\sqrt{2}$.

点评 本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在区间[-1,5]上任取一个数x,则log2(x+3)≥log2(3x+4)-1的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=lnx+x2-ax.
(1)当a=2时,求方程f(x)=0在(1,+∞)上的实根的个数;
(2)若函数f(x)既有极大值又有极小值,求实数a的取值范围;
(3)设a>0,若不等式f(x)<x2-$\frac{a}{x}$对任意x∈(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(-1,0),O为坐标原点,点G(1,$\frac{{\sqrt{2}}}{2}}$)在椭圆上,过点F的直线l交椭圆于不同的两点 A、B.
(1)求椭圆C的方程;
(2)求弦AB的中点M的轨迹方程;
(3)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,P为x轴上一点,若PA、PB是菱形的两条邻边,求点P横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若在直线x=$\frac{{a}^{2}}{c}$(其中c2+b2=a2)上存在点P,使线段PF1的垂直平分线经过点F2,则椭圆离心率的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{3}}{3}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),A(0,4)为长轴的一个端点,弦BC过椭圆的中心O,且$\overrightarrow{AC}•\overrightarrow{BC}$=0,|$\overrightarrow{OB}-\overrightarrow{OC}$|=2|$\overrightarrow{BC}-\overrightarrow{BA}$|,则其焦距为$\frac{8\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点为F,右顶点为A,点P为椭圆上一点,若△PFA的周长为7,则△PFA的面积为$\frac{3\sqrt{21}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系Oxyz中,点A(-3,-4,5)关于平面xOz的对称点的坐标为(  )
A.(3,-4,5)B.(-3,-4,-5)C.(3,-4,-5)D.(-3,4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={-1,0,1,2},B={x|1≤2x<4},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{0,1}D.{1,2}

查看答案和解析>>

同步练习册答案