精英家教网 > 高中数学 > 题目详情
10.已知椭圆$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),A(0,4)为长轴的一个端点,弦BC过椭圆的中心O,且$\overrightarrow{AC}•\overrightarrow{BC}$=0,|$\overrightarrow{OB}-\overrightarrow{OC}$|=2|$\overrightarrow{BC}-\overrightarrow{BA}$|,则其焦距为$\frac{8\sqrt{6}}{3}$.

分析 利用$\overrightarrow{AC}•\overrightarrow{BC}$=0,|$\overrightarrow{OB}-\overrightarrow{OC}$|=2|$\overrightarrow{BC}-\overrightarrow{BA}$|,可得AC⊥BC,OC=AC,求出C的坐标,代入椭圆方程,求出b,可得c,即可求出椭圆的焦距.

解答 解:因为$\overrightarrow{AC}•\overrightarrow{BC}$=0,|$\overrightarrow{OB}-\overrightarrow{OC}$|=2|$\overrightarrow{BC}-\overrightarrow{BA}$|,
所以AC⊥BC,OC=AC,
因为OA=4,
所以C(2,2),代入椭圆方程可得$\frac{4}{16}+\frac{4}{{b}^{2}}=1$,
所以b2=$\frac{16}{3}$,
所以c=$\sqrt{16-\frac{16}{3}}$=$\frac{4\sqrt{6}}{3}$,
所以2c=$\frac{8\sqrt{6}}{3}$.
故答案为:$\frac{8\sqrt{6}}{3}$.

点评 本题考查椭圆的方程与性质,考查学生的计算能力,确定C的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知tanA=2,tanB=3,∠A的对边a=1.
(1)求∠C的大小;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=k(x+2)交椭圆于P、Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,右焦点为F(c,0),方程ax2+bx-c=0的两个实根x1,x2,则点P(x1,x2)(  )
A.必在圆x2+)y2=2上B.必在圆x2+y2=2内
C.必在圆x2+y2=2外D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线6x+y-3=0平行,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[-2,$\sqrt{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若抛物线$\frac{1}{2p}$x2=y的焦点与椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{6}$=1的上焦点重合,则p的值为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题P:?x∈R,log2x>0,命题q:?x0∈R,${2}^{{x}_{0}}$<0,则下列为真命题的是(  )
A.p∨qB.p∧qC.(¬p)∧qD.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知幂函数f(x)=${x^{-{m^2}+2m+3}}$(m∈Z)在区间(0,+∞)上是单调增函数,且y=f(x)的图象关于y轴对称,则f(-2)的值为(  )
A.16B.8C.-16D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在等差数列{an}中,已知a4+a14=1,则S17=$\frac{17}{2}$.

查看答案和解析>>

同步练习册答案