精英家教网 > 高中数学 > 题目详情
19.已知幂函数f(x)=${x^{-{m^2}+2m+3}}$(m∈Z)在区间(0,+∞)上是单调增函数,且y=f(x)的图象关于y轴对称,则f(-2)的值为(  )
A.16B.8C.-16D.-8

分析 利用幂函数的奇偶性和单调性即可求出.

解答 解:∵幂函数f(x)=${x^{-{m^2}+2m+3}}$(m∈Z)的图象关于y轴对称,
∴函数f(x)=${x^{-{m^2}+2m+3}}$(m∈Z)是偶函数,
又∵幂函数f(x)=${x^{-{m^2}+2m+3}}$(m∈Z)在(0,+∞)上为增函数,
∴-m2+2m+3是偶数且-m2+2m+3>0,∵m∈N*,∴m=1,
∴幂函数f(x)=x4
f(-2)=16.
故选:A.

点评 熟练掌握幂函数的奇偶性和单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若方程2x+x=8的根x0∈($\frac{k}{2}$,$\frac{k+1}{2}$)k∈Z,则k的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),A(0,4)为长轴的一个端点,弦BC过椭圆的中心O,且$\overrightarrow{AC}•\overrightarrow{BC}$=0,|$\overrightarrow{OB}-\overrightarrow{OC}$|=2|$\overrightarrow{BC}-\overrightarrow{BA}$|,则其焦距为$\frac{8\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y-2≤0}\end{array}\right.$确定的平面区域记为Ω1,不等式x2+y2≤2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系Oxyz中,点A(-3,-4,5)关于平面xOz的对称点的坐标为(  )
A.(3,-4,5)B.(-3,-4,-5)C.(3,-4,-5)D.(-3,4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆M的圆心在x轴上,半径为1,直线l:y=3x-1被圆M所截得的弦长为$\frac{{2\sqrt{15}}}{5}$,且圆心M在直线l的下方.
(Ⅰ)求圆M的方程;
(Ⅱ)设A(0,t),B(0,t+4)(-3≤t≤-1),过A,B两点分别做圆M的一条切线,相交于点C,求由此得到的△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某娱乐栏目有两名选手进行最后决赛,在赛前为调查甲、乙两位选手的受欢迎程度,随机地从现场选择了15位观众对两位选手进行评分,根据评分(评分越高表明越受观众欢迎),绘制茎叶图如下:
(1)求观众对甲、乙两选手评分的中位数;
(2)试根据茎叶图分析甲、乙两选手的受欢迎程度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过(0,-1)
(1)求该椭圆的方程;
(2)设F1,F2分别为椭圆C的左、右焦点,A,B是椭圆上的点,并在x轴的上方,若$\overrightarrow{{F}_{1}A}$=5$\overrightarrow{{F}_{2}B}$,求四边形ABF2F1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为(  )
A.|MO|-|MT|>b-aB.|MO|-|MT|=b-aC.|MP|-|MT|<b-aD.不确定

查看答案和解析>>

同步练习册答案