精英家教网 > 高中数学 > 题目详情
20.设F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若在直线x=$\frac{{a}^{2}}{c}$(其中c2+b2=a2)上存在点P,使线段PF1的垂直平分线经过点F2,则椭圆离心率的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{3}}{3}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

分析 设点P($\frac{{a}^{2}}{c}$,m),则由中点公式可得线段PF1的中点K的坐标,根据 线段PF1的斜率与 KF2的斜率之积等于-1,求出m2的解析式,再利用m2≥0,得到3e4+2e2-1≥0,求得e的范围,再结合椭圆离心率的范围进一步e 的范围.

解答 解:由题意得  F1(-c,0)),F2 (c,0),
设点P($\frac{{a}^{2}}{c}$,m),
则由中点公式可得线段PF1的中点K($\frac{{a}^{2}-{c}^{2}}{2c}$,$\frac{1}{2}$m ),
∴线段PF1的斜率与 KF2的斜率之积等于-1,
即$\frac{m-0}{\frac{{a}^{2}}{c}+c}$•$\frac{\frac{1}{2}m-0}{\frac{{a}^{2}-{c}^{2}}{2c}-c}$=-1,
∴m2=-($\frac{{a}^{2}}{c}$+c)•($\frac{{a}^{2}}{c}$-3c)≥0,
∴a4-2a2c2-3 c4≤0,
∴3e4+2e2-1≥0,∴e2≥$\frac{1}{3}$,或 e2≤-1(舍去),
∴e≥$\frac{\sqrt{3}}{3}$.
又椭圆的离心力率  0<e<1,
故$\frac{\sqrt{3}}{3}$≤e<1,
故选C.

点评 本题考查线段的中点公式,两直线垂直的性质,以及椭圆的简单性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2+cx+d是实数集R上的奇函数,且在x=1处取得极小值-2.
(1)求f(x)的表达式;
(2)已知函数g(x)=|x|-2,判断关于x的方程f(g(x))-k=0解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>0,函数f(x)=$\frac{|x-2a|}{x+2a}$在区间[1,4]上的最大值等于$\frac{1}{3}$,则a的值为(  )
A.$\frac{1}{4}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{x^2}{6}+\frac{y^2}{2}=1$的离心率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=4x,O为坐标原点,F为其焦点,当点P在抛物线C上运动时,$\frac{|PO|}{|PF|}$的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线6x+y-3=0平行,导函数f′(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[-2,$\sqrt{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),椭圆的左右焦点F1,F2与其短轴的端点构成等边三角形,且满足a2=4c(c是椭圆C的半焦距).
(1)求椭圆C的方程;
(2)设直线l:3x-2y=0与椭圆C在x轴上方的一个交点为P,F是椭圆的右焦点,试探究以PF为直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于n∈N+,将n表示为n=a${\;}_{0}×{2}^{k}$+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,a1=1,当1≤i≤k时,a1为0或1,记I(n)为上诉表示中ai为0个数(例如:1-1×20,4=1×22+0×21+0×00,故I(1)=0,I(4)=2),则
(1)I(15)=0
(2)$\underset{\stackrel{126}{∑}}{n=1}$2I(n)=1092.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下个数有可能是五进制数的是(  )
A.15B.106C.731D.21340

查看答案和解析>>

同步练习册答案