| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
分析 根据映射的定义A集合中的任一一个元素在B中均有且只有一个元素与其对应,其中A中的元素为B中对应元素的原象,B中元素成为象.据此对题目中的5个结论逐一进行判断即可得到答案.
解答 解:根据映射的定义,
易得①A中每一元素在B中有唯一象,正确;
②B中的某一个元素b的原象可能不止一个,故不正确;
③B中元素可以在A中无原象,正确
④B是A中所有元素的象的集合,不正确;
⑤由于集合中的任一一个元素在B中均有且只有一个元素与其对应,故错误;
故选B.
点评 本题考查的知识点是映射的定义,根据映射的定义:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应叫做集合A到集合B的映射,记作f:A→B.其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象.集合A中多有元素的像的集合记作f(A).解答本题的关键是紧抓A中元素的任意性和B中元素的唯一性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 3 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 5$\sqrt{2}$ | C. | 2$\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 1或3 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com