精英家教网 > 高中数学 > 题目详情
15.已知p:函数f(x)=$\frac{{\sqrt{4-{x^2}}}}{x+4}$-m有零点,q:|m|≤$\frac{{\sqrt{3}}}{3}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 令x=2cosθ,θ∈[0,π],g(x)=$\frac{sinθ}{cosθ+2}$由于函数f(x)=$\frac{{\sqrt{4-{x^2}}}}{x+4}$-m有零点,可得m的求值范围.即可得出.

解答 解:令x=2cosθ,θ∈[0,π],
则g(x)=$\frac{{\sqrt{4-{x^2}}}}{x+4}$=$\frac{2sinθ}{2cosθ+4}$=$\frac{sinθ}{cosθ+2}$∈$[0,\frac{\sqrt{3}}{3}]$.
∵函数f(x)=$\frac{{\sqrt{4-{x^2}}}}{x+4}$-m有零点,∴m∈$[0,\frac{\sqrt{3}}{3}]$.
对于q:|m|≤$\frac{{\sqrt{3}}}{3}$,解得m∈$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.
∴p是q的充分不必要条件.
故选:A.

点评 本题考查了函数的性质、斜率计算公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.$\underset{∬}{D}$$\frac{y}{{x}^{2}+{y}^{2}}$dσ,D是由y2=x,y=x及y=$\sqrt{3}$围成的区域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,则z=2x+2y的最小值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=x+lg\frac{1+x}{1-x}+5,且f(a)=6,则f(-a)$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足不等式组$\left\{\begin{array}{l}x≥1\\ y≥1\\ x-y+1≥0\\ x+y≤6\end{array}\right.$,则z=$\frac{x+2y}{x+y}$的取值范围是[$\frac{7}{6}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的公差d≠0,且a1,a3,a9构成等比数列{bn}的前3项,则$\frac{{{a_1}+{a_3}+{a_6}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等差数列{an}的前n项和为Sn,则“a2>0且a1>0”是“数列{Sn}单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设|$\overrightarrow{c}$|=2,向量$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(3,1),则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为(  )
A.8$\sqrt{5}$B.4$\sqrt{5}$-4C.8D.4+4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=(sinx+cosx)2的最大值与最小正周期分别是(  )
A.2,2πB.2,πC.3,2πD.3,π

查看答案和解析>>

同步练习册答案