精英家教网 > 高中数学 > 题目详情
6.计算:
(1)${({-\frac{7}{8}})^0}+\root{4}{{{{({3-π})}^4}}}$;
(2)(log32+log92)•(log43+log83)

分析 (1)根据指数幂的运算性质可得,
(2)根据对数的运算性质可得.

解答 解:(1)原式=1+π-3=π-2,
(2)原式=(log32+$\frac{1}{2}$log32)•($\frac{1}{2}$log23+$\frac{1}{3}$log23)=$\frac{3}{2}$log32•$\frac{5}{6}$log23=$\frac{5}{4}$.

点评 本题考查了指数幂和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合M={-3,-2,-1},N={x|(x+2)(x-3)<0},则M∩N=(  )
A.{-1}B.{-2,-1}C.{-2,-1}D.{-3,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.($\frac{1}{4}$,-1)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,-1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=0.5${\;}^{\frac{1}{2}}$,b=0.9${\;}^{\frac{1}{2}}$,c=log50.3,则a,b,c的大小关系是(  )
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-$\frac{1}{x}$.
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1)时,t•f(2x)≥2x-1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=x-\frac{1}{x}$,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是 (  )
A.m<-1或0<m<1B.0<m<1C.m<-1D.-1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.幂函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$在(0,+∞))上是减函数,则实数m 值为(  )
A.2B.-1C.2或-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线y=kx+1-2k与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置关系为(  )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x>0,则函数$y=\frac{{2{x^2}-3x+8}}{x}$的最小值为5.

查看答案和解析>>

同步练习册答案