| A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1 |
分析 利用双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{6}}{2}$,左顶点到一条渐近线的距离为$\frac{2\sqrt{6}}{3}$,建立方程组,求出a,b,即可求出该双曲线的标准方程.
解答 解:由题意,$\left\{\begin{array}{l}{\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}=\frac{\sqrt{6}}{2}}\\{\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{2\sqrt{6}}{3}}\end{array}\right.$,
解的b=2,a=2$\sqrt{2}$,
∴双曲线的标准方程为$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$.
故选:D.
点评 本题考查双曲线的方程和性质,主要考查渐近线方程和离心率的求法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{x^2}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x0 | ||
| C. | f(x)=$\root{3}{x^3}$,g(x)=x | D. | f(x)=x-1,g(x)=$\frac{{{x^2}-1}}{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(a+b)(\frac{1}{a}+\frac{1}{b})≥4$ | B. | a3+b3≥2ab | C. | a2+b2≥2a+2b | D. | $\sqrt{|{a-b}|}$≤$|\sqrt{a}-\sqrt{b}|$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com