精英家教网 > 高中数学 > 题目详情
8.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=-1+\frac{4}{5}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于M,N两点,求M,N两点间的距离.

分析 (1)直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=-1+\frac{4}{5}t}\end{array}\right.$(t为参数),消去参数t,可得直线l的普通方程.
曲线C的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开可得:ρ2=$\sqrt{2}×\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ),利用互化公式可得曲线C的直角坐标方程.
(2)把直线l的参数方程代入圆的方程可得:5t2-21t+20=0,利用|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.

解答 解:(1)直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=-1+\frac{4}{5}t}\end{array}\right.$(t为参数),消去参数t,可得直线l的普通方程:4x-3y+1=0.
曲线C的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),展开可得:ρ2=$\sqrt{2}×\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ),可得曲线C的直角坐标方程:
x2+y2=x+y.
(2)把直线l的参数方程代入圆的方程可得:5t2-21t+20=0,
∴t1+t2=$\frac{21}{5}$,t1•t2=4.
∴|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{\sqrt{41}}{5}$.

点评 本题考查了直线参数的应用、极坐标方程化为直角坐标方程、弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{6}}{2}$,左顶点到一条渐近线的距离为$\frac{2\sqrt{6}}{3}$,则该双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A.B.C的对边分别为a,b,c,若a2+c2=b2+$\sqrt{2}$ac,则∠B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线y=ex+1与曲线y=ln(x+a)相切,则a的值为$\frac{3}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y=kx与函数f(x)=$\frac{{|{{x^2}-1}|}}{x-1}$图象有两个交点,则k的范围是(  )
A.$({0,\sqrt{3}})$B.$({0,1})∪({1,\sqrt{3}})$C.$({1,\sqrt{3}})$D.(0,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=2x2-6x+1在区间[-1,1]上的最小值为m,最大值为M,则M+m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次函数f(x)=-x2+6x在区间[0,4]上的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连接AP、EF、PF,其中PF=2$\sqrt{5}$.
(1)求证:平面PEF⊥平面ABED;
(2)求点F到平面PBE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C:x2+y2-4x=0,直线l:mx-y+3m=0,则(  )
A.l与C相交B.l与C相切
C.l与C相离D.以上三个选项均有可能

查看答案和解析>>

同步练习册答案