精英家教网 > 高中数学 > 题目详情
16.已知直线y=ex+1与曲线y=ln(x+a)相切,则a的值为$\frac{3}{e}$.

分析 切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.

解答 解:设切点P(x0,y0),则y0=ex0+1,y0=ln(x0+a),
又∵$y′{|}_{x={x}_{0}}$=$\frac{1}{{x}_{0}+a}$=e
∴x0+a=$\frac{1}{e}$,x0=$\frac{1}{e}-a$,
x0=$\frac{1}{e}-a$,代入y0=ln(x0+a),
∴y0=-1,
y0=-1代入y0=ex0+1,
解得x0=-$\frac{2}{e}$,
x0=-$\frac{2}{e}$代入x0+a=$\frac{1}{e}$,
∴a=$\frac{3}{e}$.
故答案为:$\frac{3}{e}$.

点评 本题考查导数的几何意义,常利用它求曲线的切线方程,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列各组函数表示同一函数的是(  )
A.f(x)=$\sqrt{x^2}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=$\root{3}{x^3}$,g(x)=xD.f(x)=x-1,g(x)=$\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈[-1,2],x+a≤0,若命题p是假命题,则实数a的取值范围是(1,+∞).(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,D是BC的中点.
    (1)求直线A1B与C1D所成角的余弦值;
(2)求三棱锥C1-ADB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某几何体的三视图如图所示,根据图中标出的数据,可得这个几何体的表面积为4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用秦九绍算法求f(x)=2x5-3x3+2x2-x+5,函数在x=2时的V2的值是(  )
A.4B.23C.12D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=-1+\frac{4}{5}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于M,N两点,求M,N两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个函数中,既关于原点对称,又在定义域上单调递增的是(  )
A.y=tanxB.y=x+1C.y=x3D.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当函数$f(x)=\frac{5}{x}+lnx$取得最小值时,x的值为5.

查看答案和解析>>

同步练习册答案