分析 由已知可得a2+c2-b2=$\sqrt{2}$ac,利用余弦定理可求cosB=$\frac{\sqrt{2}}{2}$,结合范围B∈(0°,180°),即可得解B的值.
解答 解:在△ABC中,∵a2+c2=b2+$\sqrt{2}$ac,
∴a2+c2-b2=$\sqrt{2}$ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0°,180°),
∴B=45°.
故答案为:45°.
点评 本题主要考查了余弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com