精英家教网 > 高中数学 > 题目详情
4.已知f(x)=ax4+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x-2.
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调区间.

分析 (1)求出f′(x)=4ax3+2bx,利用导数的几何意义列出方程组,求出a,b,c,由此能求出y=f(x)的解析式.
(2)求出f′(x)=10x3-9x,利用导数性质能求出y=f(x)的单调递区间.

解答 解:(1)∵f(x)=ax4+bx2+c的图象经过点(0,1),
且在x=1处的切线方程是y=x-2,
∴f′(x)=4ax3+2bx,
∴$\left\{\begin{array}{l}{f(0)=c=1}\\{{f}^{'}(1)=4a+2b=1}\\{f(1)=a+b+c=-1}\end{array}\right.$,
解得a=$\frac{5}{2}$,b=-$\frac{9}{2}$,c=1,
∴y=f(x)的解析式为f(x)=$\frac{5}{2}{x}^{4}$-$\frac{9}{2}{x}^{2}$+1.
(2)f′(x)=10x3-9x,
由f′(x)=10x3-9x>0,得-$\frac{3\sqrt{10}}{10}$<x<0或x>$\frac{3\sqrt{10}}{10}$,
由f′(x)=10x3-9x<0,得x<-$\frac{3\sqrt{10}}{10}$或0<x<$\frac{3\sqrt{10}}{10}$,
∴y=f(x)的单调递增区间为(-$\frac{3\sqrt{10}}{10}$,0),($\frac{3\sqrt{10}}{10}$,+∞),
单调减区间为(-∞,-$\frac{3\sqrt{10}}{10}$),(0,$\frac{3\sqrt{10}}{3}$).

点评 本题考查函数的解析式的求法,考查函数的单调区间的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数y=x2-mx-3m+3的图象过点(0,6),则它的解析式为(  )
A.y=x2-x+6B.y=x2+x+6C.y=x2-3x+6D.y=x2+3x+6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足x2+y2-4x-6y+9=0,则x2+y2的取值范围是$[17-4\sqrt{13},17+4\sqrt{13}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-4<0},集合B={x|x>log37},则(∁RA)∩B等于(  )
A.[-2,+∞]B.(-∞,2)C.[2,+∞)D.(log37,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是一个空间几何体的三视图,则该几何体的表面积是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.2+$\sqrt{2}$+$\sqrt{3}$C.3+$\sqrt{2}$+$\sqrt{3}$D.4+$\sqrt{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,与函数y=$\frac{1}{\root{3}{x}}$定义域相同的函数为(  )
A.y=$\frac{1}{\sqrt{x}}$B.y=$\frac{lnx}{x}$C.y=xexD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{2}{5}$$\overrightarrow{OB}$,AD与BC交于点M,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$.在线段AC上取一点E,在线段BD上取一点F,使EF过点M,设$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$.
(1)用$\vec a,\vec b$向量表示$\overrightarrow{OM}$
(2 )求证:$\frac{1}{6p}$+$\frac{1}{3q}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的面积为$\frac{1}{4}({a^2}+{b^2}-{c^2})$,则角C的度数是(  )
A.45B.60C.120D.135

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

同步练习册答案