精英家教网 > 高中数学 > 题目详情
(2006•朝阳区三模)已知数列{an}的前n项和Sn满足log2Sn=n,则其通项an=
2(n=1)
2n-1(n≥2)
2(n=1)
2n-1(n≥2)
分析:由对数式变形得到数列{an}的前n项和Sn,分类讨论求解其通项an
解答:解:由log2Sn=n,得Sn=2n
当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1
n=1时不成立.
an=
2(n=1)
2n-1(n≥2)

故答案为
2(n=1)
2n-1(n≥2)
点评:本题考查阿勒数列的概念及简单表示法,考查了由数列前n项和求通项,关键是注意分类讨论,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•朝阳区三模)甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每位参赛者都从备选题中随机抽出3道题进行测试,至少答对2道题才算通过.
(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;
(Ⅱ)求甲、乙两人至少有一人通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区三模)函数y=f(x)的图象如图所示,则y=f(x)的导函数y=f′(x)的图象可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区三模)已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,则f-1(-
14
)
的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区三模)在等比数列{an}中,若a9=1,则有等式a1a2…an=a1a2…a17-n,(n<17,n∈N*)成立.类比上述性质,相应的在等差数列{bn}中,若b9=0,则有等式
b1+b2+…+bn=b1+b2+…+b17-n,(n<17,n∈N*)
b1+b2+…+bn=b1+b2+…+b17-n,(n<17,n∈N*)
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区三模)已知:在正三棱柱ABC-A1B1C1中,AB=a,AA1=2a,D、E分别是侧棱BB1和AC1的中点.
(Ⅰ)求异面直线AD与A1C1所成角的余弦值;
(Ⅱ)求证:ED⊥平面ACC1A1
(Ⅲ)求平面ADC1与平面ABC所成二面角的大小.

查看答案和解析>>

同步练习册答案