精英家教网 > 高中数学 > 题目详情
7.函数$y=2sin({\frac{π}{4}-2x})$的单调增区间是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

分析 利用诱导公式化简函数的解析式,利用正弦函数的单调性,求得函数$y=2sin({\frac{π}{4}-2x})$的单调增区间.

解答 解:∵函数$y=2sin({\frac{π}{4}-2x})$=-2sin(2x-$\frac{π}{4}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
可得函数f(x)的单调增区间是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,
故答案为:$[{kπ+\frac{3π}{8},kπ+\frac{7π}{8}}]({k∈Z})$.

点评 本题主要考查诱导公式、正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.等差数列{an}满足a3=10,a5=4.数列的前n项和为Sn
(1)求数列{an}的通项公式;
(2)求S10
(3)求前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,则f(0)的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)$(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法中不正确的是(  )
A.函数g(x)图象的对称轴方程为$x=kπ-\frac{π}{12}(k∈Z)$
B.函数g(x)的最大值为$2\sqrt{2}$
C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行
D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知变量x,y的取值如表所示:
x456
y867
如果y与x线性相关,且线性回归方程为$\widehat{y}$=$\widehat{b}$x+2,则$\widehat{b}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-2x≤0},B={y|y=log2(x+2),x∈A},则A∩B为(  )
A.(0,1)B.[0,1]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则$z=\frac{y}{x}$的取值范围为(  )
A.(2,5)B.[2,5)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于由直线x=0,x=1,y=0和曲线y=x2所围成的曲边梯形,当把区间[0,1]等分为10个小区间时,曲边梯形的面积近似等于$\frac{57}{200}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为两所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到下面的柱状图:
以这100所乡村中学流失教师数的频率代替1所乡村中学流失教师数发生的概率,记X表示两所乡村中学在过去三年共流失的教师数,n表示今年为两所乡村中学招聘的教师数.为保障乡村孩子教育部受影响,若未来三年内教师有短缺,则第四年马上招聘.
(Ⅰ)求X的分布列;
(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;
(Ⅲ)以未来四年内招聘教师所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

查看答案和解析>>

同步练习册答案