精英家教网 > 高中数学 > 题目详情
从高h米的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为(  )
A、2h米
B、
2
h米
C、
3
h米
D、2
2
h米
考点:解三角形的实际应用
专题:应用题,解三角形
分析:作出示意图,求出AC,AD,利用勾股定理求出两船间的距离.
解答: 解:由题意,如图所示,AB=h,∠ABC=60°,∠CAD=90°,∠ABD=45°,
∴AC=
3
h,AD=h,
∴CD=
3h2+h2
=2h,
故选:A.
点评:本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数i(2-i)=(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈{-1,1,2},则直线ax+by-3=0(a2+b2≠0)与圆x2+y2=4有公共点的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(λ,1),
b
=(λ+2,1),若|
a
+
b
|=|
a
-
b
|,则实数λ的值为(  )
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin2x+2sinxcosx+3cos2x
(Ⅰ)若x∈R,求函数f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分别是内角A、B、C的 对边,若bsinA=
3
accosB,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右顶点,F是右焦点,M是双曲线上异于A、B的动点,过点B作x轴的垂线与直线MA交于点P.若直线OP与BM的斜率之积为4,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1 恒成立
(1)求f(1)的.
(2)求f(x)的解析式
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x-1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)在如图坐标系里用五点法画出函数f(x),x∈[-
12
12
]的图象.
x-
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=(  )
A、
10
10
B、
3
10
10
C、
5
5
D、
2
5
5

查看答案和解析>>

同步练习册答案