【题目】已知f(x)=ax2(a∈R),g(x)=2ln x.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[
,e]上有两个不等解,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
,直线
,直线
与椭圆
交于不同的两点
,点
和点
关于
轴对称,直线
与
轴交于点
.
![]()
(1)若点
是椭圆
的一个焦点,求该椭圆的长轴的长度;
(2)若
,且
,求
的值;
(3)若
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l1:kx-y+4=0与直线l2:x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为( )
A.2B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的
,
分别为45,63,则输出的
为( )
![]()
A. 2B. 3C. 5D. 9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,AB∥CD,AB
,E为PC中点.
![]()
(Ⅰ)证明:BE∥平面PAD;
(Ⅱ)若AB⊥平面PBC,△PBC是边长为2的正三角形,求点E到平面PAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在教材中,我们已研究出如下结论:平面内
条直线最多可将平面分成
个部分.现探究:空间内
个平面最多可将空间分成多少个部分,
.设空间内
个平面最多可将空间分成
个部分.
(1)求
的值;
(2)用数学归纳法证明此结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex
(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com