精英家教网 > 高中数学 > 题目详情

如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.其中一定成立的是( )

A.①②④ B.①③④ C.②③④ D.①②③

 

D

【解析】

试题分析:连接BD.证△PCD≌△HCD(HL)得CH=CP;再证明△ADP≌△BDH(AAS)得AD=DB;AP=BH,无法证明DH为圆的切线.

【解析】
连接BD.

由题意可证△PCD≌△HCD(HL),

∴CH=CP;

还可以证明△ADP≌△BDH(AAS),

∴AD=DB;AP=BH.

因圆的直径不确定,而无法证明DH为圆的切线.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2015年人教A版必修二4.3 空间直角坐标系练习卷(解析版) 题型:

下列各点不在曲线x2+y2+z2=12上的是( )

A.(2,﹣2,2) B.

C.(﹣2,2,2) D.(1,3,4)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-2 4.1变换的不变量 矩阵特征向量(解析版) 题型:填空题

矩阵的特征值为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-1 2.3圆的切线性质及判定定理练习(解析版) 题型:选择题

如图,P是半圆O的直径BC延长线上一点,PT切半圆于点T,TH⊥BC于H,若PT=1,PB+PC=2a,则PH=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-1 2.3圆的切线性质及判定定理练习(解析版) 题型:选择题

如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,为半径的圆的位置关系是 ( )

A.相离 B.相交 C.相切 D.不确定

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-1 2.3圆的切线性质及判定定理练习(解析版) 题型:选择题

(2010•自贡二模)如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为( )

A.4cm B.5cm C.6cm D.8cm

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-1 2.2圆内接四边形性质与判定定理(解析版) 题型:填空题

(2013•江门一模)(几何证明选讲选做题)如图,圆O内的两条弦AB、CD相交于P,PA=PB=4,PD=4PC.若O到AB的距离为4,则O到CD的距离为 .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014新人教A版选修4-1 2.2圆内接四边形性质与判定定理(解析版) 题型:选择题

如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB的距离是( )

A.6 B.9﹣ C. D.25﹣3

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-2 2.2直接证明与间接证明练习卷(解析版) 题型:填空题

如果a+b>a+b,则a、b应满足的条件是 .

 

查看答案和解析>>

同步练习册答案