精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a2=
3
2
,2Sn+1=3Sn+2(n∈N*).
(1)证明数列{an}为等比数列,并求出通项公式;
(2)设数列{bn}的通项bn=
1
an
,求数列{bn}的前n项的和Tn
(3)求满足不等式3Tn>Sn(n∈N+)的n的值.
(1)由2Sn+1=3Sn+2得到,2Sn=3Sn-1+2(n≥2)
则2an+1=3an(n≥2),
又a2=
3
2
,2S2=3S1+2,∴a1=1,
a2
a1
=
3
2

an+1
an
=
3
2
(n∈N*)

故数列{an}为等比数列,且an=(
3
2
)n-1

(2)由(1)知,an=(
3
2
)
n-1
,又由数列{bn}的通项bn=
1
an
,则bn=(
2
3
)
n-1

Tn=
1-(
2
3
)n
1-
2
3
=3[1-(
2
3
)n]

(3)由(1)知,an=(
3
2
)
n-1
,则Sn=
1-(
3
2
)
n
1-
3
2
=2[(
3
2
)n-1]

由(2)知,Tn=3[1-(
2
3
)
n
]

则3Tn>Sn(n∈N+)?9[1-(
2
3
)
n
]>2[(
3
2
)
n
-1]

t=(
3
2
)
n
(t>1),则9(1-
1
t
)>2(t-1)

解得 1<t<
9
2
,即1<(
3
2
)n
9
2

又由f(x)=(
3
2
)x
在R上为增函数,(
3
2
)3=
9
2
×
3
4
(
3
2
)
4
=
9
2
×
9
8

故n=1,2,3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案