精英家教网 > 高中数学 > 题目详情

【题目】湖北省第二届(荆州)园林博览会于2019年9月28日至11月28日在荆州园博园举办,本届园林博览会以“辉煌荆楚,生态园博”为主题,展示荆州生态之美,文化之韵,吸引更多优秀企业来荆投资,从而促进荆州经济快速发展.在此博览会期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放荆州市场.已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备万台,且全部售完,且每万台的销售收入(万元)与年产量(万台)的函数关系式近似满足

(1)写出年利润(万元)关于年产量(万台)的函数解析式.(年利润年销售收入总成本).

(2)当年产量为多少万台时,该公司获得的利润最大?并求最大利润.

【答案】(1)(2)当年产量为万台时,该公司获得最大利润1350万元

【解析】

1)利用利润等于收入减去成本,可得分段函数解析式;

2)分段求出函数的最大值,比较可得结果.

(1)

(2)当时,,在上单调递增

取最大值

时,

取“=”)

综上所述当年产量为万台时,该公司获得最大利润1350万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是每个大于的偶数可以表示为两个素数的和,如.现从不超过的素数中,随机选取两个不同的数(两个数无序).(注:不超过的素数有

1)列举出满足条件的所有基本事件;

2)求选取的两个数之和等于事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,且.

(Ⅰ)求证:

(Ⅱ)求直线AB与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查某社区80个人,以研究这一社区居民在晚上8点至十点时间段的休闲方式与性别的关系,得到下面的数据表:

1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,求这3人中至少有1人是以看书为休闲方式的概率;

2)根据以上数据,能否有99%的把握认为“在晚上8点至十点时间段的休闲方式与性别有关系?”

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆锥的高,是圆锥底面的直径,是底面圆周上一点,的中点,平面和平面将圆锥截去部分后的几何体如图所示.

1)求证:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与y轴垂直.

1)若,求的单调区间;

2)若成立,求a的取值范围

查看答案和解析>>

同步练习册答案