【题目】已知
:曲线
表示双曲线;
:曲线
表示焦点在
轴上的椭圆.
(1)分别求出条件
中的实数
的取值范围;
(2)甲同学认为“
是
的充分条件”,乙同学认为“
是
的必要条件”,请判断两位同学的说法是否正确,并说明理由.
【答案】(1)满足条件
的实数
的取值范围是
;满足条件
的实数
的取值范围是
;(2)甲同学的判断正确,乙同学的判断不正确,理由详见解析.
【解析】
(1)根据双曲线的定义有
,根据椭圆焦点在
轴上有
,分别解不等式,求交集即可.
(2)由(1)得出
是
中
的取值范围,由“小范围可以推出大范围,大范围不能推出小范围”即可得出结论.
解:(1)若曲线
表示双曲线,
则
,得
;
因此满足条件
的实数
的取值范围是
.
若曲线
表示焦点在
轴上的椭圆,
需
,
得
,得
或
.
因此满足条件
的实数
的取值范围是
.
(2)甲同学的判断正确,乙同学的判断不正确.
由(1)得
,![]()
因为
,
所以
是
的充分条件,
因为
,
所以
不是
的必要条件.
故:甲同学的判断正确,乙同学的判断不正确.
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中已知A(4,O)、B(0,2)、C(-1,0)、D(0,-2),点E在线段AB(不含端点)上,点F在线段CD上,E、O、F三点共线.
![]()
(1)若F为线段CD的中点,证明:
;
(2)“若F为线段CD的中点,则
”的逆命题是否成立?说明理由;
(3)设
,求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,且经过点
.
求椭圆
的方程;
过点
且不与
轴重合的直线
与椭圆
交于不同的两点
,
,过右焦点
的直线
分别交椭圆
于点
,设
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数,实数
),曲线
(
为参数,实数
).在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
交于
,
两点,与
交于
,
两点.当
时,
;当
,
.
(1)求
和
的值.
(2)求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com