精英家教网 > 高中数学 > 题目详情
(11)设A(x1,y1),B(4,),C(x2,y2)是右焦点为F的椭圆上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是“x1+x2=8”的

(A)充要条件                            (B)必要而不充分条件

(C)充分而不必要条件                    (D)既不充分也不必要条件

A

解析:由椭圆第二定义知.

|AF|,|BF|,|CF|成等差数列2|BF|=|AF|+|CF|2(5-e·4)=(5-ex1)+(5-ex2x1+x2=8.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上任意两点,且
OM
=
1
2
(
OA
+
OB
)
,已知M的横坐标为
1
2

(1)求证:M点的纵坐标为定值;
(2)若Sn=
n-1
i=1
f(
i
n
)
,其中n∈N*,且n≥2,求Sn
(3)已知an=
2
3
,n=1
1
(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,Tn<λ(Sn+1+1),对一切n∈N*都成立,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
(
OA
+
OB
)
,已知点M的横坐标为
1
2

(1)求点M的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,
①求Sn
②已知an=
2
3
,n=1
1
(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:江西 题型:解答题

设函数f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常数且a∈(0,1).
(1)当a=
1
2
时,求f(f(
1
3
));
(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[
1
3
1
2
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案