精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,在y轴的正半轴(原点除外)上给定两点A(0,a)、B(0,b)(a>b>0).试在x轴的正半轴(原点除外)上求点C,使∠ACB取得最大值,并求出这个最大值.
分析:先由题意作图,设C(x,0),进而根据A,B坐标表示出直线AC和BC的斜率,进而根据正切的两角和公式求得tan∠ACB的表达式,根据均值不等式求得最大值时x的值.
解答:精英家教网解:由题意作下图,设C(x,0),其中x>0.
又A(0,a),B(0,b)(a>b>0),
则kAC=
a-0
0-x
=-
a
x

kBC=
b-0
0-x
=-
b
x

∴tan∠ACB=
kBC-kAC
1+kBCkAC
=
a
x
-
b
x
1+
ab
x2
=
a-b
ab
[
x
ab
+
ab
x
]
a-b
2
ab
.此时x=
ab
时取等号.
故所求点C(
ab
,0),最大值为arctan
a-b
2
ab
点评:本题主要考查了基本不等式在最值问题中的应用.在解决最值问题时,要注意拼凑出均值不等式的形式,进而求得最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案