【题目】已知某产品的销售额
与广告费用
之间的关系如下表:
| 0 | 1 | 2 | 3 | 4 |
| 10 | 15 |
| 30 | 35 |
若根据表中的数据用最小二乘法求得
对
的回归直线方程为
,则下列说法中错误的是( )
A.产品的销售额与广告费用成正相关
B.该回归直线过点![]()
C.当广告费用为10万元时,销售额一定为74万元
D.
的值是20
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减,②存在常数
,使其值域为
,则称函数
是函数
的“渐近函数”.
(1)判断函数
是不是函数
的“渐近函数”,说明理由;
(2)求证:函数
不是函数
的“渐近函数”;
(3)若函数
,
,求证:当且仅当
时,
是
的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知
平面
,且四边形
为直角梯形,
,
,
.
![]()
(Ⅰ)求平面
与平面
所成二面角(锐角)的余弦值;
(Ⅱ)点
是线段
上的动点,当直线
与
所成角最小时,求线段
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实数
使得
则称
是区间
的
一内点.
(1)求证:
的充要条件是存在
使得
是区间
的
一内点;
(2)若实数
满足:
求证:存在
,使得
是区间
的
一内点;
(3)给定实数
,若对于任意区间
,
是区间的
一内点,
是区间的
一内点,且不等式
和不等式
对于任意
都恒成立,求证:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块三角形边角地,如图
,
,
,
.(单位为百米).欲利用这块地修一个三角形形状的草坪(图中
)供市民休闲,其中点
在边
上,点
在边
上,沿
的三边修建休闲长廊,规划部门要求
的面积占
面积的一半,设
(百米),
的周长为
(百米)
![]()
(1)求出
函数的解析式及定义域
(2)求出休闲长廊总长度
的取值范围,并确定当
取到最大值时点
,
的位置
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)存在实数
使
;
(2)直线
是函数
图象的一条对称轴;
(3)
(
)的值域是
;
(4)若
,
都是第一象限角,且
,则
.
其中正确命题的序号为( )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则![]()
②若
,
,
,则![]()
③若
,
,则![]()
④若
,
,则![]()
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com