精英家教网 > 高中数学 > 题目详情
1.将-$\frac{25}{6}$π化成a+2kπ(k∈Z,0≤a<2π)的形式为(  )
A.-$\frac{25}{6}$π=-5π+$\frac{5}{6}$πB.-$\frac{25}{6}$π=-6π+$\frac{11}{6}$πC.-$\frac{25}{6}$π=-4π-$\frac{π}{6}$D.-$\frac{25}{6}$π=-3π-$\frac{7}{6}$π

分析 直接利用终边相同角的表示方法,求解即可.

解答 解:-$\frac{25}{6}$π=-6π+$\frac{11}{6}$π.
故选:B.

点评 本题考查终边相同角的表示,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知点(x,y)在映射f:A→B作用下的象是(x+y,x-y),x∈R,y∈R,则点(8,2)的原象
是(5,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(x+2)n+(x-2)n,其中n=3${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则f(x)的展开式中x4的系数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=$\frac{1}{1+{x}^{2}}$+x3${∫}_{0}^{1}$f(x)dx,则${∫}_{0}^{1}$f(x)dx=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=3sin(x+$\frac{π}{5}$)+4cos(x+$\frac{π}{5}$)的最小值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.Rt△ABC中.|AB|=2a(a>0),求直角顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正六棱柱的各个面所在的平面中,有4对互相平行,与一个侧面所在平面相交的有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线,求k的取值范围,并写出焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在侧棱长为a的正三棱锥S-ABC中,∠BSA=$\frac{π}{2}$,P为△ABC内一动点,且P到三个侧面SAB,SBC,SCA的距离为d1,d2,d3.若d1+d2=d3,则点P形成曲线的长度为$\frac{\sqrt{2}}{2}$a.

查看答案和解析>>

同步练习册答案