精英家教网 > 高中数学 > 题目详情
10.设集合A={x|f(x)=0},B={x|g(x)=0},那么方程f(x)•g(x)=0的解集是(  )
A.AB.BC.A∩BD.A∪B

分析 由f(x)•g(x)=0得f(x)=0或g(x)=0,可得答案.

解答 解:∵f(x)•g(x)=0则f(x)=0或g(x)=0,
∴其解集为A∪B.
故选:A.

点评 本题考查了方程的解集与并集的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x2,求f(2x+1)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.Sn表示数列{an}前n项和(n∈N*),则当Sn满足(  )条件时,数列{an}为等差数列.
A.Sn=an2+bnB.Sn=an2+bn+cC.Sn=an2+bn+c(c≠0)D.Sn=an2+bn(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若f(x)=arctan$\frac{2-2x}{1+4x}$+C在(-$\frac{1}{4}$,$\frac{1}{4}$)上是奇函数,求C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F(x)=f(x)+f(-x),x∈R,若[-π,-$\frac{π}{2}$]是函数F(x)的单调递增区间,则一定是F(x)单调递减区间的是(  )
A.[-$\frac{π}{2}$,0]B.[$\frac{π}{2}$,0]C.[π,$\frac{3}{3}$π]D.[$\frac{3}{2}π$,2π]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=log${\;}_{\frac{1}{2}}$(x+8-$\frac{a}{x}$)在区间[1,+∞)单调递减,则实数a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的不等式kx2-2x+1>0的解集是{x∈R|x≠$\frac{1}{k}$},则k的值是(  )
A.1B.-1C.±1D.-1≤x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义在R+上的函数f(x)满足:
(1)对任意a,b∈R+,有f(ab)=f(a)+f(b);
(2)当x>1时,f(x)<0;
(3)f(3)=-1.
现有两个集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+}; B={(p,q)|f($\frac{p}{q}$)+$\frac{1}{2}$=0,p,q∈R+}.试问:是否存在p,q,使A∩B≠∅,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标分别是-2,6,图象与y轴相交,交点与原点的距离为3,求此函数的解析式.

查看答案和解析>>

同步练习册答案