精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ”的______条件.
必要不充分
φf(x)=Acos =-Asin ωx为奇函数,∴“f(x)是奇函数”是“φ”的必要条件.
f(x)=Acos(ωxφ)是奇函数⇒f(0)=0⇒φkπ(k∈Z)D/⇒φ.
∴“f(x)是奇函数”不是“φ”的充分条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在函数的图象上,直线图象的任意两条对称轴,且的最小值为.
(1)求函数的单递增区间和其图象的对称中心坐标;
(2)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,xÎR.
(1)求函数的最小正周期和单调递增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,把所得到的图象再向左平移单位,得到函数的图象,求函数在区间上的最小值.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数yf′(x)的图象如图,下列关于函数f(x)的四个命题:
x
-1
0
4
5
f(x)
1
2
2
1
 

①函数yf(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数yf(x)-a有4个零点.其中真命题的个数是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列说法:
①正切函数在定义域内是增函数;
②函数f(x)=2tan 的单调递增区间是 (k∈Z);
③函数y=2tan的定义域是
④函数y=tan x+1在上的最大值为+1,最小值为0.
其中正确说法的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A,B,C,D是函数一个周期内的图象上的四个点,如图所示,B为轴上的点,C为图像上的最低点,E为该函数图像的一个对称中心,B与D关于点E对称,轴上的投影为,则的值为(  )

A.    B.
C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数y=sin(2xφ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能取值为(  ).
A.B.C.0D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2sin ωx·cos ωx+2cos2ωx(其中ω>0),且函数f(x)的周期为π.
(1)求ω的值;
(2)将函数yf(x)的图象向右平移个单位长度,再将所得图象各点的横坐标缩小到原来的倍(纵坐标不变)得到函数yg(x)的图象,求函数g(x)在上的单调区间.

查看答案和解析>>

同步练习册答案