精英家教网 > 高中数学 > 题目详情

如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.

(1)详见解析;(2)详见解析

解析试题分析:(1)要证明为圆的直径,只需证明,结合,在中,只需证明,从而转化为证明,由弦切角定理以及很容易证明;(2)要证明,由(1)得,只需证明为圆的直径.连接,只需证明.只需证明.因为,故,根据同弧所对的圆周角相等得,故,从而.得证
(1)因为.所以.由于为切线,所以.又由于,所以.由于,所以.故为圆的直径.
(2)连接.由于是直径,故.在中,
.从而.于是.又因为,所以.又因为,所以.故.由于,所以为直角.于是为直径.由(1)得,

考点:1、三角形全等;2、弦切角定理;3、圆的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知:如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程的两根,
⑴求a和b的值;
⑵△与△ABC开始时完全重合,然后让△ABC固定不动,将
以1厘米/秒的速度沿BC所在的直线向左移动.
ⅰ)设x秒后△与△ABC 的重叠部分的面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;
ⅱ)几秒后重叠部分的面积等于平方厘米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=AB,点F在BC上,且CF=BC.求证:

(1)EF⊥BC;
(2)∠ADE=∠EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,分别为的边上的点,且不与的顶点重合。已知的长为,AC的长为n,的长是关于的方程的两个根。

(1)证明:四点共圆;
(2)若,且,求所在圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B,C是⊙O上的三点,BE切⊙O于点B,D是与⊙O的交点.若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,
  
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,若AB=2,CD=3,____________.

查看答案和解析>>

同步练习册答案