精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两个焦点为F1(-2,0),F2(2,0),P是椭圆上的动点,且|PF1||PF2|的最大值为6.
(1)求椭圆方程;
(2)过左焦点的直线l交椭圆C与M、N两点,且满足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直线l的方程(其中∠MON=θ,O为坐标原点).

分析 (1)由题意可得c=2,设P(x,y),|PF1|•|PF2|=$\sqrt{(x+2)^{2}+{y}^{2}}$•$\sqrt{(x-2)^{2}+{y}^{2}}$,则P为短轴顶点时,|PF1|•|PF2|取最大值,则$\frac{2×{b}^{2}+8}{2}$=6,a2=b2+c2,进而得到a,b,即可得到椭圆方程;
(2)椭圆的左焦点为F1(-2,0),则直线l的方程为y=k(x+2),代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0,设M(x1,y1),N(x2,y2),由韦达定理,结合向量的数量积的定义和三角形的面积公式,解方程可得k,由此能求出l的方程.

解答 解:(1)由题意可得c=2,设P(x,y),则|PF1|=$\sqrt{(x+2)^{2}+{y}^{2}}$,|PF2|=$\sqrt{(x-2)^{2}+{y}^{2}}$,
∴|PF1|•|PF2|=$\sqrt{(x+2)^{2}+{y}^{2}}$•$\sqrt{(x-2)^{2}+{y}^{2}}$≤$\frac{(x+2)^{2}+{y}^{2}+(x-2)^{2}+{y}^{2}}{2}$=$\frac{2({x}^{2}+{y}^{2})+8}{2}$,
当且仅当$\sqrt{(x+2)^{2}+{y}^{2}}$=$\sqrt{(x-2)^{2}+{y}^{2}}$,即x=0,y=b时取最大值,
∴P为短轴顶点时,|PF1|•|PF2|取最大值,
∴$\frac{2×{b}^{2}+8}{2}$=6,
解得:b2=2,
a2=b2+c2=2+4=6,
∴椭圆方程为:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(2)椭圆的左焦点为F1(-2,0),则直线l的方程为y=k(x+2),
代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0,
设M(x1,y1),N(x2,y2),则x1+x2=-$\frac{12{k}^{2}}{1+3{k}^{2}}$,x1•x2=$\frac{12{k}^{2}-6}{1+3{k}^{2}}$,
$\overrightarrow{OM}$•$\overrightarrow{ON}$=丨$\overrightarrow{OM}$丨•丨$\overrightarrow{ON}$丨cosθ=$\frac{4\sqrt{6}cosθ}{3sinθ}$,$(θ≠\frac{π}{2})$,
丨$\overrightarrow{OM}$丨•丨$\overrightarrow{ON}$丨sinθ=$\frac{4\sqrt{6}}{3}$,即S△OMN=$\frac{1}{2}$•丨$\overrightarrow{OM}$丨•丨$\overrightarrow{ON}$丨sinθ=$\frac{2\sqrt{6}}{3}$,
∵|MN|=$\sqrt{1+{k}^{2}}$•|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{6}(1+{k}^{2})}{1+3{k}^{2}}$,
原点O到m的距离d=$\frac{丨2k丨}{\sqrt{1+{k}^{2}}}$,
则S△OMN=$\frac{1}{2}$•|MN|•d=$\frac{1}{2}$•$\frac{2\sqrt{6}(1+{k}^{2})}{1+3{k}^{2}}$•$\frac{丨2k丨}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{6}}{3}$,
解得k=±$\frac{\sqrt{3}}{3}$,
∴l的方程为y=±$\frac{\sqrt{3}}{3}$(x+2).

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系,向量的运算,韦达定理,点到直线的距离公式及三角形的面积公式,考查运算求解能力,推理论证能力,考查化归与转化思想.综合性强,是高考的重点.解题时要认真审题,仔细解答,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$,则sinx-cosx的值为(  )
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$±\frac{7}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(3)=1.
(1)求几何A={x|f(x)>f(x-1)+2};
(2)比较f(a+1-lna)与f($\frac{1}{a}$+1+lna)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)化简$\frac{\sqrt{1-2sin10°cos10°}}{sin170°-\sqrt{1-si{n}^{2}170°}}$;
(2)已知tanθ=2,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,且△F1PF2的三边长构成等差数列,则此双曲线的渐近线方程为y=±2$\sqrt{6}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:?x∈R使mx2-mx+1<0成立,q:方程$\frac{x^2}{m-1}+\frac{y^2}{3-m}=1$的曲线是双曲线,若命题p∧q为假命题、命题p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=1-$\frac{1}{x}$在[3,4)上(  )
A.有最小值无最大值B.有最大值无最小值
C.既有最大值又有最小值D.最大值和最小值皆不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设θ是第二象限角,则点P(sinθ,cosθ)在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.“x>1”是“x>2”的充分不必要条件
B.命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0,则x≠0或y≠0”
C.命题“?x∈R,2x>0”的否定是“?x0∈R,2x<0”
D.若命题“?x0∈R,x02+mx0+2m-3<0”为假命题,则m的取值范围是[2,6]

查看答案和解析>>

同步练习册答案