精英家教网 > 高中数学 > 题目详情
2.设F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,且△F1PF2的三边长构成等差数列,则此双曲线的渐近线方程为y=±2$\sqrt{6}$x.

分析 由已知可得,PF1>PF2,PF1⊥PF2,由△F1PF2的三边长构成等差数列,可得2PF1=F1F2+PF2,结合双曲线的定义,PF1=PF2+2a,利用勾股定理可得PF${\;}_{1}^{2}$+PF${\;}_{2}^{2}$=F1F${\;}_{2}^{2}$,代入可求a与c的比值,从而得到$\frac{b}{a}$的值,得到该双曲线的渐近线方程.

解答 解:由P为双曲线的右支上一点可知,PF1>PF2
∵$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴PF1⊥PF2
∴F1F2>PF1>PF2
由△F1PF2的三边长构成等差数列,可得2PF1=F1F2+PF2=2c+PF2①,
又由双曲线的定义可知,PF1-PF2=2a即PF1=PF2+2a②,
①②联立可得,PF2=2c-4a,PF1=2c-2a,
∵$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴PF${\;}_{1}^{2}$+PF${\;}_{2}^{2}$=F1F${\;}_{2}^{2}$,即(2c-4a)2+(2c-2a)2=4c2
整理可得,c2-6ac+5a2=0,
∵c>a,
∴c=5a,可得:a=$\frac{c}{5}$,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{2\sqrt{6}c}{5}$,
∴$\frac{b}{a}$=2$\sqrt{6}$,得该双曲线的渐近线方程为y=±2$\sqrt{6}$x.
故答案为:y=±2$\sqrt{6}$x.

点评 本题主要考查了双曲线的定义及性质在求解双曲线方程中的应用,解题的关键是确定等差数列的中间项,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥PABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.
(1)求证:AD⊥PC;
(2)求三棱锥APDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2(n∈{N^+})$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${c_n}=\frac{n+1}{n}{a_n},{T_n}={c_1}+{c_2}+…+{c_n}$,试比较Tn与$\frac{5n}{2n+1}$的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.15°角的弧度数是(  )
A.$\frac{π}{15}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若(x2+ax+1)6(a>0)的展开式中x2的系数是66,则实数a的值为(  )
A.4B.3C.2D.l

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两个焦点为F1(-2,0),F2(2,0),P是椭圆上的动点,且|PF1||PF2|的最大值为6.
(1)求椭圆方程;
(2)过左焦点的直线l交椭圆C与M、N两点,且满足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直线l的方程(其中∠MON=θ,O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在单位圆O的一条直径上随机取一点Q,则过点Q且与该直径垂直的弦长长度不超过1的概率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=\left\{{\begin{array}{l}{{2^{-|x|}},\;\;x<1}\\{|{{x^2}-2x}|,\;\;x≥1}\end{array}}\right.$,则不等式f(x)≤3的解集是(  )
A.(-∞,3]B.(-∞,3)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax-a(a∈R,e=2.71828…).
(Ⅰ)当a=e时,求函数f(x)的极值;
(Ⅱ)当a=1时,求证:对任意的正整数n,都有$\frac{2}{2+1}$×$\frac{{2}^{2}}{{2}^{2}+1}$×…×$\frac{{2}^{n}}{{2}^{n}+1}$>$\frac{1}{e}$.

查看答案和解析>>

同步练习册答案