精英家教网 > 高中数学 > 题目详情

函数同时满足下列条件:①是奇函数;②在[0,1]上是增函数;③在

[0,1]上最小值为0,则=      (写出一个你认为正确的即可).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数y=f(x),若同时满足下列条件:
①函数y=f(x)在定义域D内是单调递增或单调递减函数;
②存在区间[a,b]⊆3D,使函数f(x)在[a,b]上的值域为[a,b],则称f(x)是D上的闭函数.
(1)求闭函数f(x)=-x3符合条件②的区间[a,b];
(2)判断函数g(x)=
3
4
x+
1
x
,在区间(0,+∞)上是否为闭函数;
(3)若函数φ(x)=k+
x+2
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“梦想区间”.若函数f(x)=a-
1
x
(a>0)
存在“梦想区间”,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x),x∈D同时满足下列条件:
(1)在D内的单调函数;
(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设f(x)=
ax+a-3lna
(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖南汝城第一中学、长沙实验中学高三11月联考理数学卷(解析版) 题型:填空题

若函数同时满足下列条件,(1)在D内为单调函数;(2)存在实数.当时,,则称此函数为D内的等射函数,设则:

(1) 在(-∞,+∞)的单调性为         (填增函数或减函数);(2)当为R内的等射函数时,的取值范围是                          

 

查看答案和解析>>

同步练习册答案