精英家教网 > 高中数学 > 题目详情
6.二项式($\frac{1}{\sqrt{x}}$-x210的展开式中的常数项是45.

分析 利用二项式的通项公式即可得出x的指数幂为0,即可得出r的值,就能够求解常数项.

解答 解:由通项公式Tr+1=${C}_{10}^{r}$($\frac{1}{\sqrt{x}}$)r(-x210-r=${C}_{10}^{r}$(-1)10-r(x)${\;}^{20-\frac{5}{2}x}$,
令20-$\frac{5r}{2}$=0=0,解得r=8.
∴常数项为T8=${C}_{10}^{8}$×(-1)2=45
故答案为:45.

点评 本题考查了二项式的通项公式、常数项的求法,属于基础题,准确求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,已知椭圆C:$\frac{x^2}{24}+\frac{{y{\;}^2}}{12}$=1,设R(x0,y0)是椭圆C上任一点,从原点O向圆R:(x-x02+(y-y02=8作两条切线,切点分别为P,Q.
(1)若直线OP,OQ互相垂直,且R在第一象限,求圆R的方程;
(2)若直线OP,OQ的斜率都存在,并记为k1,k2,求证:2k1k2+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(sinx+cosx)2+$\sqrt{3}({sin^2}x-{cos^2}x)$,$x∈[{\frac{π}{4},\frac{π}{2}}]$,当x=α时,f(x)有最大值.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,a=2,A=α-$\frac{π}{12}$,且sinBsinC=sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{a}{2{x}^{2}},(0<|x|≤1)}\\{{a}^{x},(|x|>1)}\end{array}\right.$(a>0,a≠1),且f(1)=f(2),则f(log46)=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,长轴长为2$\sqrt{6}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的右焦点,T为直线x=t(t∈R,t≠2)上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求t的值;
(ⅱ)在(ⅰ)的条件下,当$\frac{|TF|}{|PQ|}$最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交抛物线C于A,B两点,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,公比q>1,a1+am=17,a2am-1=16,前m项和Sm=31,则项数m等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,A=60°,若a,b,c成等比数列,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,平面α,β,γ两两平行,且直线l与α,β,γ分别相交于点A,B,C,直线m与α,β,γ分别相交于点D,E,F,AB=6,BC=2,EF=3,求DE的长.

查看答案和解析>>

同步练习册答案