分析 连结CD,交β于G,从而利用两平行平面的性质定理得线线平行,再由平行直线分线段成比例定理即可得解.
解答
解:连结CD,交平面β于点G,连结EG,BG,AD,CF,如右图所示.
∵l∩CD=C,∴l与CD确定一个平面,设为α1,
∵α∩α1=AD,β∩α1=BG,且α∥β,
∴AD∥BG,
∴$\frac{AB}{BC}$=$\frac{DG}{GC}$.
同理可证GE∥CF,
∴$\frac{DG}{GC}$=$\frac{DE}{EF}$,
∴$\frac{AB}{BC}$=$\frac{DE}{EF}$.
∴DE=$\frac{AB•EF}{BC}$=$\frac{6×3}{2}$=9.
点评 本题考查了面面平行的性质定理的应用,考查了平行直线分线段成比例定理,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com