精英家教网 > 高中数学 > 题目详情
(B题)已知圆C的方程为(x-1)2+y2=9,点p为圆上一动点,定点A(-1,0),线段AP的垂直平分线与直线CP交于点M,则为点M的轨迹为(  )
A.椭圆B.双曲线C.抛物线D.圆
圆C:(x-1)2+y2=9,圆心为(1,0),半径为3,如图,
因为M是线段AP的垂直平分线与CP的交点,所以|MA|=|MP|,
所以|MA|+|MC|=|MC|+|MP|=|PC|=3.
而|AC|=2,|MA|+|MC|>|AC|.
所以由椭圆定义知,M的轨迹是以A,C为焦点的椭圆.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点P为其上的动点,当为钝角时,点P横坐标的取值范围是_________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点M1(0,-3),M2(0,3),动点P满足条件|PM1|+|PM2|=a+
9
a
(其中a是正常数),则点P的轨迹是(  )
A.椭圆B.线段C.椭圆或线段D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是两定点,|F1F2|=4,动点M满足|MF1|+|MF2|=4,则动点M的轨迹是(  )
A..椭圆B.直线C.圆D.线段

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,
(1)设椭圆C上的点(
3
3
2
)到F1,F2两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的曲线的标准方程:
(1)a=3b,经过点M(3,0)的椭圆;
(2)a=2
5
,经过点N(2,-5),焦点在y轴上的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)求经过点(-
3
2
5
2
),且与椭圆9x2+5y2=45有共同焦点的椭圆方程;
(Ⅱ)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△ABC中,BC=7,AC=3,∠A=120°,求以点B、C为焦点且过点A的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆上的一个点,是椭圆的焦点,如果点到点的距离是,那么点到点的距离是            

查看答案和解析>>

同步练习册答案